“特别能聊”的人工智能会聊出些什么?******
聊天机器人ChatGPT优异表现引发市场关注,人工智能生成内容概念走上风口
“特别能聊”的人工智能会聊出些什么?
本报记者 时斓娜
阅读提示
全新人工智能聊天机器人模型ChatGPT不仅能够通过学习人类的语言来进行对话,还能根据聊天的上下文进行互动,让人们更直观地感受到了人工智能的魅力。包括内容生成、搜索引擎增强等在内的领域,将是其潜在的产业化方向。ChatGPT的商业化落地,还需要克服技术和科技伦理等方面的问题。
家里要养一只猫,该如何给猫取名字?怎样写出一个纸牌游戏的代码?在不同语境中,词语“意思”到底有几个意思?这些五花八门、时常令人绞尽脑汁都难以得出答案的问题,在人工智能聊天机器人ChatGPT的面前,不过是瞬间便可迎刃而解的“一碟小菜”。
产品发布短短两个月,ChatGPT的日活量已突破千万,不少人“聊过”之后惊呼“这太像真正的人类了”。其超预期的表现引发越来越多的市场关注,人工智能生成内容(AIGC)概念由此走上风口。
人工智能聊天究竟能聊些啥?ChatGPT所代表的AIGC应用将带来哪些影响和变化?记者对此进行了调查采访。
“真正像人类一样聊天交流”
“我所热爱的是我真实的生活,因为它包含了我所有的经历和感受,是我每一天都在体验和思考的。”这句乍看上去充满了人类体悟和情感的话,实则出自人工智能聊天机器人ChatGPT。
随着ChatGPT大火,不少网友将它与自己的聊天记录分享到社交平台上,ChatGPT时而诙谐有趣,时而又显得思想深邃。除了各种聊天互动外,还有不少网友们将ChatGPT视为一种工具,让其写作文、翻译文章,甚至写代码。迅速的响应能力和较为靠谱的回答让大家直呼其“真正像人类一样聊天交流”“特别能聊”。
中国信息通信研究院联合中国人工智能产业发展联盟对ChatGPT进行的测试显示,ChatGPT在百科检索、数学问答、文学交流、常识问答、知识推理等对话任务上的意图识别率均达到98%左右,在生活闲聊上的意图识别率约为95%,已具备较好的语义理解能力。
实际上,ChatGPT属于生成式人工智能的一个典型应用。人工智能是怎样“进化”得如此智能的?“这是因为ChatGPT建立在大型语言模型上,会通过连接大量的语料库来训练模型。这些语料库包含了真实世界中的对话和各种网络公开信息,使ChatGPT知识丰富,还能根据上下文进行互动。”深度科技研究院院长张孝荣表示。
创新交互为AIGC带来新启发
随着人工智能技术的发展,近年来AIGC类型不断丰富、质量不断提升、技术的工程化水平越来越高,国内外科技公司纷纷发力布局AIGC领域。
以百度文心大模型为例,输入一个题目,它可以瞬间写出上百篇作文;根据一句话或者一段描述文本,可以生成一幅精美的画作;根据一幅图像,可以自动生成高清、流畅的视频。
在百度技术委员会主席吴华看来,ChatGPT在用户界面和交互上是一种比较创新的模式,用户更容易以自然语言的方式进行交互,这会给大家带来革新性的认识,也会给AIGC带来新的启发。
目前,国外一些公司在积极探索并落地ChatGPT的诸多应用场景,通过将ChatGPT整合进搜索引擎等方式提高服务智能化水平。有观点认为,ChatGPT将颠覆搜索行业,在智能客服、游戏、虚拟人等领域也将得到广泛应用。硅谷投资机构红杉预测,未来AIGC有潜力产生数万亿美元的经济价值。
根据中国信息通信研究院发布的《人工智能白皮书(2022年)》,“生成式人工智能”技术将广泛应用于智能写作、代码生成、有声阅读、新闻播报、语音导航、影像修复等领域,听说读写等能力的有机结合成为未来发展趋势。
“人工智能生成在诗歌、作曲、绘画等艺术创作方面大放异彩,在分子结构、软件代码等科研生产领域的应用不断拓展,还帮助降低临床试验的科研成本和缩短研发周期。”云计算与大数据研究所内容科技部副主任石霖表示,当前,人工智能生成内容的辐射范围还在扩大,未来有望重塑各行业领域的研发面貌。
商业化落地需克服技术和伦理问题
尽管各界对AIGC发展前景保持乐观,但从现状来看,ChatGPT等产品想要真正落地,还需要克服技术和科技伦理等方面的问题。
在对ChatGPT进行的种种评测中,ChatGPT会犯一些常识性错误,反映出其在可控性、准确率方面仍存不足。有人形容,ChatGPT像极了一个很能聊但有时候喜欢信口开河的人类朋友。
中国信息通信研究院评测结果同样显示,ChatGPT在非闲聊型对话的任务完成率上表现一般,难以摆脱传统深度学习模型普遍存在的知识整合和逻辑推理的问题。
“ChatGPT虽然能够较好地回答不少问题,但在一些略有深度的、专业性较强的领域,其答案往往‘捉襟见肘’。这说明ChatGPT语料库规模和计算能力的天然不足,也说明了算法依然需要完善。”张孝荣说。
在技术层面以外,人工智能还面临着悬而未决的科技伦理问题。张孝荣表示,ChatGPT在科技伦理方面至少面临三大挑战:“一是版权问题,ChatGPT生成的内容更多来自搬运,容易引发侵权;二是信息安全问题;三是社会缺乏接纳这一新生事物的准备机制,这对监管挑战很大。”
在国内,AIGC产业化路径同样有待探索。石霖介绍说,国内AIGC产业基础薄弱,相关初创公司数量明显少于国外。同时,国内企业目前仍处于打磨产品阶段,还未出现较为好用的内容生成服务。
人工智能如何做到可信、可用?专家热议:把责任归结到个人******
中新网北京12月11日电 人工智能治理的理想状态,是人工智能技术能做到可知、可信、可控、可用。而在现实中,人工智能技术手段虽然非常强大,但是离完美、完善仍有相当的距离。从技术角度和技术应用角度,人工智能的发展如何做到扬长避短?
近日,在2022人工智能合作与治理国际论坛上,专家围绕该话题进行了讨论。
中国工程院院士、鹏城实验室主任高文认为,现阶段很多技术还处于发展的过程中,如果过早地说这个不能用、那个不能用,可能会抑制技术本身的发展。但反过来,如果什么都不管,也不行。
“因此,现在更多还是从道德层面多进行引导。同时,做技术的人,也要尽量把一些可能的风险、抑制工具,即约束风险的工具,尽快想明白。自己也做,同时号召大家做,两者结合。”他说。
清华大学智能产业研究院国强教授、首席研究员聂再清认为,我们要保证能够创新,但同时不能让创新对我们的生活产生破坏性的影响,最好的办法就是把责任归结到个人。
“技术的背后是有人在控制的。这个人应该时刻保证工具或创新在危险可控的范围内。同时,社会也要进行集体的监督,发布某个产品或技术,要能够召回、撤销。在创新和监管之间,当然是需要平衡的,但归根结底,还是要把责任落实到个人身上。”他指出。
瑞莱智慧RealAI公司联合创始人、首席执行官田天补充道,在技术可解释性方面,需要去进行技术发展与相应应用场景的深度结合。大家需要一个更加可解释的AI模型,或者更加可解释的AI应用。
“但我们真正想落地的时候,会发现每个人想要的可解释性完全不一样。比如:模型层面的可解释,可能从研发人员角度觉得已经很好了,但是从用户的角度是看不懂的,这需要一些案例级的解释,甚至通过替代模型等方式进行解释。因此,在不同领域,需要不同的可解释能力,以及不同的可解释级别,这样才能让技术在应用场景发挥最好的作用。”他说。
将伦理准则嵌入到人工智能产品与系统研发设计中,现在是不是时候?
高文认为,人工智能软件、系统应该有召回的功能。如果社会或伦理委员会发现这样做不对,可能带来危害,要么召回,要么撤销。
高文说,应用的开发者,系统提交或者最终用户让他去调整的时候,他应该有责任。如果开发者发现已经踩线了,应该给他一个保护机制,他可以拒绝后面的支持和维护,甚至可以起诉。“不能只说哪一方不行,光说是开发者的责任,他可能觉得冤枉,因为他只提供工具,但有时候是有责任的,只是说责任怎么界定。”
“在人工智能的发展过程中,一方面要建立一些红线。”田天建议,比如,对于人工智能的直接滥用,造假、个人隐私泄露,甚至关联到国家安全、生命安全的,这些领域一定要建立相关红线,相应的惩罚规定一定要非常清晰,这是保证人工智能不触犯人类利益的基本保障。
“在这个基础上,对于处于模糊地带的,希望能留有更多空间。不光是从限制角度,也可以从鼓励更加重视伦理的角度,促进合规地发展。”田天称。
2022人工智能合作与治理国际论坛由清华大学主办,清华大学人工智能国际治理研究院(I-AIIG)承办,中国新闻网作为战略合作伙伴,联合国开发计划署(UNDP)、联合国教科文组织(UNESCO)等国际组织、国内外学术机构支持。(中新财经)
中国网客户端 国家重点新闻网站,9语种权威发布 |